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This paper develops a simplified model for sexual reproduction within the quasispecies formalism. The
model assumes a diploid genome consisting of two chromosomes, where the fitness is determined by the
number of chromosomes that are identical to a given master sequence. We also assume that there is a cost to
sexual reproduction, given by a characteristic time 7, during which haploid cells seek out a mate with which
to recombine. If the mating strategy is such that only viable haploids can mate, then when 7, =0, it is possible
to show that sexual reproduction will always out compete asexual reproduction. However, as 7, increases,
sexual reproduction only becomes advantageous at progressively higher mutation rates. Once the time cost for
sex reaches a critical threshold, the selective advantage for sexual reproduction disappears entirely. The results
of this paper suggest that sexual reproduction is not advantageous in small populations per se, but rather in
populations with low replication rates. In this regime, the cost for sex is sufficiently low that the selective
advantage obtained through recombination leads to the dominance of the strategy. In fact, at a given replication
rate and for a fixed environment volume, sexual reproduction is selected for in high populations because of the

reduced time spent finding a reproductive partner.
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I. INTRODUCTION

Sexual reproduction is the observed mode of reproduction
for nearly all multicellular organisms. As such, the evolution
of sex has been one of the central outstanding questions in
evolutionary biology.

One of the biological explanations for the existence of sex
is that it provides a natural mechanism for diploid organisms
to eliminate deleterious mutations from a population [1]. The
idea is that, by reproducing via a haploid intermediate, it is
possible for haploids without defective genes to recombine
with one another, thereby preventing the accumulation of
deleterious mutations. Other explanations that have been ad-
vanced are that sex leads to greater variability in a popula-
tion, making the population more adaptable in adverse con-
ditions. It has also been postulated that sex evolved as a
mechanism for coping with parasites [1].

In recent years, there have been a number of numerical
studies focusing on the evolutionary dynamics of sexual rep-
lication [ 1-5]. These studies have established that, depending
on the choice of parameters, either sexual or asexual modes
of reproduction are the advantageous replication strategy.
One study in particular argues that sexual reproduction is
favored when the number of daughter genomes produced by
the parents is high, since this reduces the amount of time
required to find a reproductive partner [3].

Traditionally, the mutation elimination argument for sex
has relied on the assumption that populations are sufficiently
small that a reduction in mutation accumulation is necessary
for countering a phenomenon known as Muller’s Ratchet
[6-8], whereby the fitness of a finite population continually
decreases due to the steady accumulation of deleterious mu-
tations. Since sexual replication occurs primarily in multil-
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cellular organisms, typical population sizes for communities
of such organisms are significantly smaller than for single-
celled organisms, and so an argument based on Muller’s
Ratchet is reasonable.

In this paper, we present a relatively simple model that
allows us to compare sexual and asexual replication strate-
gies. The essential result is that sexual replication is favored
in populations with low replication rates, and when the char-
acteristic time associated with finding a reproductive partner
is small compared with the time scale associated with repli-
cation. These results suggest that increasing population den-
sity favors the sexual replication strategy, since it reduces the
time scale associated with finding a mate.

Our model does not rely on the assumption of a finite
population. Nevertheless, because our model suggests that
sex is an advantageous replication strategy at low replication
rates, it is consistent with explanations for the existence of
sex that require the assumption of small populations.

Our model is analytically solvable, and treatable within
the quasispecies formalism. Briefly, the quasispecies model
is a system of ordinary differential equations describing the
evolutionary dynamics of replicating polynucleotides. The
model was originally developed by Eigen and Schuster to
describe the possible chemical evolution of the earliest self-
replicating systems that subsequently gave rise to cellular
life [9-11]. The quasispecies model was found to have rel-
evance to the evolutionary dynamics of RNA viruses, and
has since been the focus of considerable theoretical work,
with applications to immune response, antibiotic drug resis-
tance, and the emergence of cancer [12-41].

The central result of the quasispecies model is a localiza-
tion to delocalization transition over the genome space,
termed the error catastrophe, which occurs when the genome
replication fidelity drops below a critical value. The error
catastrophe occurs when the replicative selection is no longer
sufficiently strong to counter genetic drift, leading to delo-
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calization over the corresponding regions of the genome. The
error catastrophe has been extensively studied both theoreti-
cally and numerically, and has been well-characterized for a
number of fitness landscapes [12,19,39].

This paper is organized as follows: In the following sec-
tion (Sec. II), we develop a simplified model for sexual re-
production, whose steady-state behavior we proceed to char-
acterize in Sec. III. In Sec. IV we compare sexual and
asexual replication, and establish regimes where each is the
preferred mode of reproduction. This is determined by the
mean fitness of the populations at steady-state. When the
sexual population has the higher mean fitness, it will have a
higher growth rate than the asexually reproducing popula-
tion, and thus the sexual reproductive strategy will be se-
lected for in the given parameter regime. Conversely, the
asexual strategy will be selected for in parameter regimes for
which the mean fitness of the asexual replicators is greater
than that of the sexual replicators.

Finally, we conclude the paper in Sec. V with a brief
discussion and an outline of avenues for future research.

II. A SIMPLIFIED MODEL FOR SEXUAL
REPLICATION

In a simplified model for sexual replication, we assume
that we have a population of single-celled organisms, where
each organism has a genome consisting of two chromo-
somes. We assume that each chromosome may be denoted by
a linear symbol sequence o=s;--s;, where each letter, or
base, s;, is chosen from an alphabet of size S (=4 for known
terrestrial life). We further assume that there exists a “mas-
ter” sequence o, for which a given chromosome is func-
tional. It is assumed that a chromosome is nonfunctional
whenever o # oy (that is, the genes on such a chromosome
are defective).

Within this approximation, there are three distinct types of
genomes in the population:

(i) {og,00}—Genomes where both chromosomes are
identical to the master sequence.

(ii) {0y, 0 # 0p}—Genomes where only one of the chro-
mosomes is identical to the master sequence, while the other
chromosome is defective.

(iil) {o # 0y, 0’ # 0o}—Genomes where both of the chro-
mosomes are defective.

We are therefore dealing with a diploid population. If we
assign the gene sequence oy as viable, while all other gene
sequences are unviable, then our three genome types may be
classified as {V,V}, {V, U}, and {U, U}, where V/U stand for
viable/unviable.

We assume that the organisms replicate with a first-order
growth rate constant. For the three distinct genome types, the
first-order growth rate constants are taken to be «yy, Ky, and
kyy- We have that kyy= kyy > Ky

The sexual replication of the population occurs as fol-
lows: The diploid organisms divide to form a population of
haploid organisms. It is assumed that those haploid organ-
isms containing a genome of type U are incapable of partici-
pating further in the reproductive process, so that only viable
haploids can recombine with each other. The newly formed
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FIG. 1. (Color online) Comparison of the sexual and asexual
replication pathways considered in this paper.

diploids then divide via the normal mitotic pathways to form
two new daughter cells (Fig. 1 shows the difference between
the sexual and asexual replication pathways).

To develop a set of ordinary differential equations govern-
ing the replication dynamics described above, we first let nyy,
denote the total number of organisms with genome of type
{V,V}, nyy denote the total number of organisms with ge-
nome of type {V,U}, and nyy denote the total number of
organisms with genome of type {U, U}. We also let ny, denote
the population of viable haploids. We then wish to obtain
expressions for dnyy/dt, dnyy/dt, dnyy/dt, and dny/dt.

First note that, the diploid to haploid division leads to
destruction of each of the diploid genomes at a rate given by
—kyynyy for {V,V}, and similarly for the other genomes, and
a creation of viable haploid genomes at a rate given by
2ryynyy+ kyyiyy.

If we let 7,,,; denote the average amount of time a viable
haploid spends searching for a viable haploid mate, then in a
given amount of time dt the total number of viable haploids
who have recombined is given by nydt/ 7, (the individual
times are Poisson distributed). Therefore, recombination
leads to a destruction rate of haploids given by ny/ 7, and
a creation rate of diploids given by (1/2)ny/ 7

If we let p denote the probability of correctly replicating a
chromosome, then, neglecting backmutations, we have that
V— V with probability p, V— U with probability 1-p, and
U— U with probability 1. Using this, we can construct the
various possible replication pathways and their associated
probabilities, illustrated in Fig. 2. From these pathways, we
can construct the contribution to nyy, nyy, and nyy in turn.

The reason why we neglect U—V transitions is that for
some o # oy, the probability that o will backmutate to pro-
duce a daughter ¢’ =0y after replication is negligible. This
assumption is exact in the limit of infinite sequence length (a
common assumption in steady-state calculations with qua-
sispecies models), and can often be a good one for sequence
lengths as short as ten.

For nyy, all three replication pathways in Fig. 2 give a
contribution. Taking into account probabilities and degenera-
cies, we have a total contribution of 2p? from the first path-
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FIG. 2. (Color online) The various replication pathways and
their associated probabilities. The factor of 2 in the second pathway
comes from the fact that either the top or bottom parent “V” chro-
mosome can form a daughter “U” chromosome.
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way, 2p(1—-p) from the second pathway, and (1-p)?/2 from
the third pathway, giving a total rate of production of
(1/2)ny! Ty X [2p*+2p(1=p) +(1-p)*/ 2]=(1/4)ny/ Troi(1
+p)%.

For nyy, similar reasoning gives a rate of production of
(1 /2)nV/Tseek>< [2p(1 —P)+2(1 —P)2/2]=(1 /Z)nVTseek(l _p2)~

For nyy, we obtain  (1/2)ny/ 7y X (1=-p)?/2
=(1/4)nV/ Tseek(l —P)2~

Putting everything together, we obtain the system of dif-
ferential equations,

dn n
Y= — kyynyy+ ——(1 +p)?,
dt 47-seek
dn n
VU=_KVUnVU+ Y (1—172),
dt 27—seek
dnUU ny
2
=— Kyyhyy + (1-p)=,
dt seek
dnv nv
=2kyyhyy + Kyphyy — . (1)
dt seek

Re-expressing our dynamical equations in terms of the
dimensionless variables 7T=t/T, Kyy=KyyTees Kyu
= KyyTyeets A0 Kyy= KyyTeers W ODLaIN,

dnyy ~ ny 2
=—Kyynyy+ — (1 +p)7,
dr vvityy 4 ( P)
dnyy ny 2
=—Kyyhyy+ — (1 - ,
dr vultvu B ( p )
dnyy - ny 2
=—Kyyhyy+— (1 =p)~,
dr vultvu 4 ( P)
dn _ _
‘= 2Kyynyy + Kyyhyy — Ny (2)
dr
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Define n=nyy+nyy+nyy+ny, ”/=”VV+”VU+nUUv Xyy

’ ’
=nvv/n, xVV:nvvln,, xVUznVU/”l, xVUZT’lVU/n’, Xuu
=nyyln, xyy=nyy/n’, xy=ny/n. Note that x{,=xyy/(1

—xy), xyp=xyy/(1-xy), xyy=xypy/(1-xy), and ny/n’
=Xv/(1 —Xv).
Then  defining k(7)=(1/n)dn/dr  and K(7)’

=(1/n")dn’ /dt, we have,
k(1) = Kyyxyy = KyuXyus

Xy

(3)

E(T), =- (Evvx(/v+ EVUX(/U+ EUU'XZJU) + 1—x .
—Av

Re-expressing the dynamical equations in terms of the
Xyvs Xyus Xyy» Xy population fractions, we have,

d.
Zw__ [Kyy + K(7) Jxyy + ﬂ(l +p)%
dr 4
d.
VU _ [Kyy + &(7) Jxyy + ﬁ/(l -,
dr 2
d.
2w [Kyy + k(7)) Ixyy + ﬂ/(l -p)
dr 4
d.
% =—[1+ k(1) Jxy + 2Ryyxyy + Kyyxyy- (4)
-

These equations give the time evolution of the various
genome type population fractions. The quantity x(7) is
termed the mean fitness of the population. In what follows, it
will be the quantity of interest when comparing the sexual
and asexual reproductive strategies.

III. STEADY-STATE MEAN FITNESS RESULTS

We now proceed to compute the mean fitness of both the
sexually and asexually replicating populations at steady
state. At steady state, the above time derivatives may all be
set to 0, giving,

o= 2Kyyxyy + KygXvy (5)
T 14 k(r=)

Therefore, at steady state, we have that,

K(r=0)"=- ] [(2Ryyxyy + Ryyxyy)
—xy
~ ~ Xy
= (Ryyxyy = Kyyxpy) 1+ 1
—xy

=1 : [xy + K(7=0) —xy(1 + K(7=0))]
—xy

= k(7="0) (6)
and so it is equivalent to measure the mean fitness of the

population at steady state using either x(7) and x(7)’. Be-
cause k(7)’ is the mean fitness of the diploid population, it is
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the most natural one for comparison with an asexually rep-
licating population, since asexually replicating organisms do
not go through a haploid intermediate. The equivalence be-
tween x(7) and k(7)’ means that we can compute x(7) at
steady state and compare the results directly with the value
of k(7) for the asexually replicating population.

Plugging the steady-state value of xy into the steady-state
equations for xyy and xy,, we obtain,

1 2 1
Oz{kw(2< erp) 1+E(T=w)_1)_R(T:w)}XW

) -
# (14—
4 1 + k(7=0)

0= {EVU(%(l—pz) 1)_’?(7':00):|XVU

1+ i(r=)

+(1 —Pz) & )Evvxvv- (7)

1+ (7

We can solve the first equation for xy; in terms of xyy. Plug-
ging the resulting expression into the second equation, we
obtain, after some algebra, the quadratic,

1 2
o=rte=mr=|mfd 5] -

1 _ — ~1 o~
- EKVU(I +p2)} K(1=%) = KyyKyyD s (8)
where ki, = Kyy/(1+Kyy), Ky =Kyy/ (1+Kyp).

We can further simplify the notation by defining k= kyy,
and a=Kyy/ Kyy. Then k(7=)/k is the solution to the qua-
dratic,

0=x>-A(p,k,a)x - B(p,k,a) 9)
where,
1 1+p>2 1 5
A s Ity = 2 o _1 -2 5
P, x.0) 1+K[<2 } STra TP
B(p, k@) = 2 (10)
priea _1+K1+a’Kp.

Differentiating both sides of the quadratic, it is possible to
show, after some manipulation, that dx/dp>0, and hence
that the mean fitness is an increasing function of p.

IV. COMPARISON OF SEXUAL AND ASEXUAL
REPLICATION

If, for simplicity, we assume that x;;;;=0, then for asexual
replication the steady-state value for k(7=%)/k may be
readily characterized [22]: It is given by max{Z(l—;E)2
—1,ap}. Therefore, if Perie 18 defined by the equality 2((1
+pcrit)/2)2_ 1= AP crips then?
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1+p)\?
’?(7-:00) _ 2<Tp> -1 lfp € [pcrinl]

K

(11)
ap lfp € (O’pcrit]

It should be noted that p,,;, is simply the critical replication
fidelity where the fraction of organisms in the population
with two master strands in their genomes drops to zero. Once
the replication fidelity drops below p.,;;, the selective advan-
tage for maintaining two master strands is no longer suffi-
ciently strong to counter mutational loss into genomes with
only the master strand, hence functionality is lost in one of
the master strands due to genetic drift.

We now proceed to compare these mean fitness values
with that obtained for sexual replication.

A. Case 1: k=0

We begin by considering the case where there is no time
cost associated with sex, so that 7,,,,=0= «=0. Then

1 2 1
A(p.0,a) = [2<¥> - 1] - Ea(l +p?),

B(P’O’a’)=ap. (12)

We claim that for k=0, E(TZOC)/KZIHEIX{Z(I_;E)Z
—l,ap}, with equality occurring only when p=1 for arbi-
trary «, and a=0,1.

To prove this claim, note first that for p=1, we have
2(1—;2)2—1: 1, and that k(7=)/k=1=max{1,a}. So since
the claim is true for p=1, we may now consider p €[0,1).

If =0, then E(T:w)zmax{Z(l—zﬂ)z—l,O}, while if a=1,
then E(T:oo)zpzmax{2(l—;2)2— 1,p}, since 2(%2)2— I1<p
for p €[0,1], with equality occurring only when p=1.

So, we now consider the case where ae(0,1), and p
e[0,1). If we define k(p)=2(1—;2)2—1, then we have two
possibilities: Either max{k(p),ap}=k(p), or max{k(p),ap}
=ap. We will consider each of these two cases in turn.

So, first assume that max{k(p),ap}=k(p). We wish to
show that,

l{k@)—la’(1+ %) + \/(k(p)—la(l+ 2))2+4a ]
> > p 5 p p
> k(p). (13)

After some manipulation, we obtain that this condition is
equivalent to the condition that,

0>p*+2p°-2p—1. (14)

To establish this inequality for p € [0, 1), note that p*+2p3
—2p—1=(p-D)(P3+3p*>+3p+1). Since p*+3p2+p+1>0
for p €[0,1), and since p—1<0 for p € [0, 1), the inequality
follows.

So now suppose that max{k(p),ap}=ap, so that k(p)
< ap. Then for our calculations, we first rewrite A(p,0, ) as
a(p—1)+(1-a)k(p). Then we wish to show that,
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FIG. 3. Comparison of x(7=)/k for both sexual and asexual
replication, with k=0 and @=1/2. Note that sexual replication out-
competes asexual replication for all mutation regimes.

Jlatp 1)+ (1~ a)k(p)

+V(alp— 1)+ (1 - k(p))* +4ap] > ap. (15)

After some manipulation, this becomes equivalent to the
condition that,

k(p) + 1> alk(p) + 1) (16)

which is certainly true, since k(p)+1>0 for p €[0,1), and
ae(0,1) by assumption.

Therefore, we have proven our claim, and hence, within
this model, sexual replication leads to a greater mean fitness
for a population than asexual replication, assuming that there
is no cost associated with sex. Figure 3 shows a plot of
k(7=2)/ K for both sexual and asexual replication, assuming
a=1/2 and k=0.

Note that for k=0, if a sexually and asexually replicating
population were placed in an identical flask, then under the
circumstances dictated by our model the sexually replicating
population would eventually dominate the population (that
is, the fraction of sexually replicating organisms would in-
crease to 1, while the fraction of asexually replicating organ-
isms would decrease to 0).

B. Case 2: k>0

For x>0, we have, for sexual replication, that (7
=)/ K=HI__K for p=1. Since for asexual replication we get
K(r=»)/k=1 for p=1, it follows by continuity that there
exists a regime [p_(x),1] for which asexual reproduction
leads to a greater mean fitness of the population than sexual
reproduction. Presumably, as « increases, p=(«) should de-
crease.

We can determine, for a given k, the mutation regime
where asexual replication outcompetes sexual replication,
and the mutation regime where sexual replication outcom-
petes asexual replication. To do this, we do not attempt to
compute p_(x) directly. Rather, as a function of p, we seek to
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determine «_(p), the value of k for which asexual and sexual
replication yield identical mean fitnesses. Since by definition
k-(p(k))=k, the function x_(p) may be inverted to obtain
p-(x). In what follows, we restrict our analysis to the case
where a € (0,1) (if =0, 1, then for x>0 asexual reproduc-
tion outcompetes sexual reproduction for all values of p).

Because the mean fitness of an asexually replicating
population falls into two distinct regimes defined by the cut-
off p,,; (at least, within the context of our model), we must
determine k_(p) separately for p<p,,;, and p>p,,,. For p
<p..ir We have for asexual replication that k(7=%)/x=ap,
and hence we must have,

1 a
21+ akx_

O=(ap)2—( (1 +P2))(CYP)

1+ k.

- (ap). (17)

Assuming that ap >0, this expression may be rearranged
and simplified to,

0=(ak)’p+(ap+ 1)(ak.) - %(1 —a)(1+p)?, (18)

so that ark_, and hence «_, may be solved using the quadratic
formula.

We claim that «_ is an increasing function of p on the
interval [0,p,,;,]. We can prove this by showing that ax_ is
an increasing function of p on the interval [0, p,,;]. Defining
x(p)=ax_(p), we have,

0=px(p)+ (ap+ Dx(p) =5 (1 - @)1 + )% (19)

Differentiating with respect to p, we obtain,

0= (2px(p) + ap + 1)x'(p) + x(p)* + ax(p) — (1 = @)(1 + p),
(20)

so we wish to show that x(p)>+ ax(p)—(1-a)(1+p) <0 for
p € (0,p..i,). Multiplying both sides of the inequality by p,
and noting that px(p)*=3(1-a)(1+p)’~(ap+1)x(p), we
have that for p>0 we need to establish the inequality,

W) > (- a1 =), 1)

To prove this inequality, note first that x(O):%(l —a), and
x'(0 =3¢(1—a)(3—a)>0. By continuity, x'(p)>0 in a
neighborhood of p=0. If x’'(p) <0 for some p>0, then by
the Intermediate Value Theorem there exists at least one p
>0 for which x'(p)=0. If p"=inf{p €[0,1]|x'(p)=0}, then
by continuity it follows that x’(p*)=0, and hence p">0.
Therefore, x’(p)>0 for p €[0,p"), otherwise by the Inter-
mediate Value Theorem there would exist a p**<p" such
that x'(p"*)=0, contradicting the definition of p”*. But, since
x'(p)>0 for p €[0,p"), it follows that x(p) is increasing on

[0.p"], hence x(p*)>x(0)=3(1-a)>3(1-a)(1-(p")),
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which implies that x'(p*) >0= «. Therefore, x'(p) >0 for
pel0,1], hence on [0,p.], x-(p) increases from %(1
—a)/ a to k(pi@)).

Now, for p € [p,.,i4»1], we have for an asexually replicat-
ing population that x(7=%)/k=k(p), hence, in this regime,
k_(p) is defined by,

_ 2 1 _l a 2)
0=Kp) (1+K:k(p) 21+aK=(1+p) Kp)
S . (22)

1+x_1+ax
which after some manipulation may be rearranged to give,
0=r2+B(p,a)x_—C(p,a), (23)

where  B(p,a)=1+1/a+(1-p)/k(p),
+1/k(p))(1-p?). We then have that,

K:@)=B<\/l+4§—l>. (24)

We claim that «_(p) is a decreasing function of p for p
€ [pyir» 1]. We will prove this by showing that B and C/B?
are both decreasing functions of p for p € [p.;,1].

To prove that B is a decreasing function of p for p
€ [perir» 1], we need show that (1-p)/k(p) is a decreasing
function of p for p € [p,,;,1]. Differentiating, we obtain,

d(l=p)__11-p+2p
dp(k(p))__Z Kpr 2

so B is certainly a decreasing function of p for p € [p i, 1].
Now, after some manipulation, we can show that,

Clp, ) =737,

1-p?

(1+k(p))(1+a—

c 1,

_2:_a,

(26)

1+ap )2'
1+k(p)

Note that 1-p? is decreasing for p € [p,.» 1], and that 1
+k(p) is increasing. We also have that,

d1+ap\ (d2)p’+p+(1-al2)
dp<1+k<p>)“ T

so that (I+ap)/(1+k(p)) is a decreasing function of p.
Therefore, 1+a—(1+ap)/(1+k(p)) is an increasing function
of p, hence C/B? is decreasing for p € [p,,;;» 1], as we wished
to show.

Figure 4 illustrates the behavior of «_(p) for three values
of a.

In what follows, we shall change our notation slightly to
explicitly indicate that x_ also depends on «. Thus, we shall
redenote k_(p) by x_(p,@). This notation was not needed in
the previous arguments, since we were considering the be-
havior of «_ at a fixed a.
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FIG. 4. «_ versus p for a=1/4,1/2,3/4. A graph of k() is
included as well.

We may now summarize the behavior of k_(p,a@) as a
function of p: From 0 to p.» x-(p,a) increases from %(1
—oz)/a to Kcrit(a)EK:(pcrit(a)»a’)» while from Perit to 1’
k-(p, @) decreases from «,,;(c) to 0. This behavior leads to
three distinct regimes of «.

For ke [O,%(l—a)/a], there exists only one value of p
for which asexual and sexual replication yield identical mean
fitness results. This value of p is contained in the interval
[Perie» 1. As k increases from 0 to %(1 —a)/ a, this value of p
decreases. For these values of «, asexual replication is ad-
vantageous over sexual replication at low mutation rates.
However, there is a crossover replication fidelity where
sexual replication becomes advantageous. As « increases,
this crossover replication fidelity gets pushed to lower val-
ues. This makes sense, since a higher value of k corresponds
to a greater penalty associated with sex.

For k € [%(1 -a)la, Km»,(a)], there exist exactly two val-
ues of p for which asexual and sexual replication yield iden-
tical mean fitness results. One value of p is contained in the
interval [0,p,,;,], while the other value is contained in the
interval [p,,;,1]. As k increases from %(1 —a)/a to kila),
the value of p in [0,p,,;,] increases from O to p,,;(a), while
the value of p in [p,;,1] decreases to p,.(a). For these
values of «, asexual replication is also advantageous over
sexual replication at low mutation rates. As with the previous
regime, there is a crossover replication fidelity where sexual
replication becomes advantageous. However, in contrast to
the first « regime, there is a second crossover replication
fidelity where asexual replication again becomes advanta-
geous. For these values of «, the cost associated with sex is
still sufficiently low that sexual replication can become the
advantageous strategy at higher mutation rates. However, the
cost of sex is sufficiently high that, at even higher mutation
rates, sexual recombination no longer offsets the production
of unviable chromosomes from viable ones to an extent that
makes the strategy advantageous.

Finally, for k € (,,;(c),®), the cost associated with sex
is so high that sexual replication is never the advantageous
strategy.
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As a final note for this subsection, we can show that
K@) is a decreasing function of a. Differentiating the qua-
dratic equation given by Eq. (19) with respect to a [where
x=x(a)= ak,;(a)], we have,

dx
0= (zxpcrit+ ap e+ 1)_
da

d .
X (2 + ax = (1= @)(1 + poy)) L
da

1
+ PericX + 5(1 +pcrit)2' (28)

Differentiating both sides of the equality defining p,;, it is
possible to show that dp,,,/da=p.;/(1-a+p,..;). We also
have, from a previous analysis, that px*+axp—(1-a)p(1
+p)=%(1—a)(1—p2)—x, so that, to show dx/da<0, we
need to show that

1
(- — Pl =X

1
0< +p.x+—(1+p..)2. (29
1_a+pcr” erl['x 2( pCrl[) ( )

Multiplying by 1-a+p,,; and simplifying, this is equivalent
to the inequality,

1
0< (1 - a_x) + Derit (1 - CL’)(I +x) +XP it 5(1 +pcri1)2 .

(30)

Since we showed that the expression for x(p) in Eq. (19),
valid over p €[0,p,,;], is an increasing function of p for p
€ [0, 1], then solving the quadratic in Eq. (19) for p=1 gives
x=<1-a. Therefore, 1 —a—x=0, hence the inequality holds.

We have therefore shown that ak,.(a@) is a decreasing
function of «, hence «,,;(a) is a decreasing function of a.
When a=1, p.,=1, so k.=0. As a—0, p,,—\2—1, so
ak.— (V4\2=-3-1)/[2(\2=1)]= k. — .

C. Consideration of ry;>0

When «y;;>0, the results for sexual replication remain
unchanged. However, the results for asexual replication
change somewhat, since now an additional localization to
delocalization  transition can  occur, once Ky
=max{ry [2((1+p)?/2)=1], kyyp. kyy}- It is therefore pos-
sible to have a situation where sexual replication only be-
comes advantageous once the mean fitness of an asexually
replicating population is k. With an appropriate choice of
parameters, it is then possible that the mean fitness of the
sexually replicating population is less than gy, so that
sexual replication will never be the preferred replication
strategy. We leave the investigation of this phenomenon for
future work.

In any event, for k>0, asexual replication will become
the advantageous mode of replication at sufficiently high
mutation rates, since the mean fitness of the sexually repli-
cating population decreases to zero, while after complete de-
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localization over the genome space has occurred, the mean
fitness of the asexually replicating population becomes ;.
This result, however, is likely due to a mating strategy that
essentially “throws away” the “U” chromosomes. Other mat-
ing strategies, where all haploids are capable of mating, may
not exhibit the same effect.

V. DISCUSSION
A. Central conclusions

This paper developed a simplified model for sexual repli-
cation, and showed, within the context of the model, that a
sexually replicating population will outcompete an asexually
replicating one when there there is no cost associated with
sex. We further showed that if the cost associated with sex is
sufficiently low, then sexual replication becomes advanta-
geous at higher mutation rates, because recombination pre-
vents the accumulation of defective mutations in the diploid
genomes (assuming that there is a fitness penalty associated
with the defective mutations). The cost for sex was measured
by the dimensionless parameter «, defined to be the product
of the first-order growth rate constant of the mutation-free
genomes (kyy), and the characteristic time associated with
finding a recombination partner (7). Since kyy=1/Tp,
where 7, denotes a characteristic replication time, it follows
that k=7y./ Trep- Therefore, the cost associated with sex is
measured by the ratio of the time a haploid spends finding a
recombination partner with the time scale for replication.
The smaller this ratio, the smaller the fitness penalty incurred
by reproducing via a haploid intermediate, and the greater
the selective advantage for sex.

The implications of this model are that sexual replication
is favored in environments where organisms replicate rela-
tively slowly, and in environments where the time spent find-
ing a recombination partner is small compared with the time
scale for replication. Thus, sexual replication is favored in
environments with a high population density. These results
are therefore consistent with the observation that sexual rep-
lication is the preferred (and generally the only) mode of
reproduction for nearly all multicellular organisms.

Although previous work has considered the effects of re-
combination on population fitness and the error catastrophe
[42], we should note that our model differs from previous
work on recombination in that it attempts to address why
reproduction via recombination of haploid intermediates is a
preferred replicative strategy for many diploid organisms.
Although recombination is observed at all levels of organis-
mal complexity, including viral [42], sexual reproduction is a
special form of recombination, in that it follows a highly
specific pathway consisting of the division of a diploid into
two haploid intermediates, and the recombination of the hap-
loid population via a prespecified mating strategy.

B. Speculation on sex differentiation

That sexual replication only becomes the preferred mode
of reproduction at low « suggests why sexual replication
occurs as a stress response in some organisms, such as Sac-
charomyces cerevisiae (Baker’s yeast). When conditions are
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favorable, kyy, and hence «, are relatively high, so asexual
replication is the advantageous strategy. Under sufficiently
adverse conditions, « can drop to levels where the sexual
strategy becomes advantageous. The replicative strategy that
can adopt the optimal replication strategy for the given en-
vironment will have a selective advantage (assuming that
resource costs for maintaining this switching behavior are
not prohibitive), and so organisms carrying this strategy in
their genomes will dominate the population.

However, as one moves toward more complex life forms,
the replication rate drops to values such that asexual replica-
tion is almost never the preferred mode of reproduction, so
that the ability for an organism to switch between the two
modes of reproduction disappears. At this point, we postulate
that the division of haploid cells into two distinct types of
gametes, and then later the division of the organisms them-
selves into male and female, are the result of selection for
evolutionary pathways leading to the division of labor and
specialization of tasks associated with sexual replication.
When replication rates are low, and when the time cost as-
sociated with sex is low, then it is likely more efficient (in
terms of resource utilization) to divide the reproductive tasks
associated with sexual replication among two types of organ-
isms (“male” and “female”). The relative fitness advantage
as a result of such savings in resource costs likely increases
with the complexity of the organism, leading to a stronger
selection pressure for a male-female split as organismal com-
plexity grows.

C. A note on Muller’s Ratchet

It is important to note that, although our model assumes
an infinite population, and therefore does not invoke
Muller’s Ratchet to explain the selective advantage for sex,
we nevertheless argue that the explanation that our model
provides for the selection for sexual replication in the low
replication-rate regime in no way contradicts the Muller’s
Ratchet principle. The reason for this is that Muller’s Ratchet
predicts a steady accumulation of deleterious mutations in
finite populations. Therefore, recombination is necessary to
prevent this accumulation.

For infinite populations, asexual replication also leads to
the persistence of deleterious genes, and indeed, the loss of
functionality in some genes due to genetic drift, once the
mutation rate is sufficiently high. Therefore, as predicted by
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our model, recombination can provide a mechanism for re-
ducing the fraction of deleterious genes in a population. The
main difference between a finite and an infinite population is
that, with a finite population, the propagation of deleterious
mutations throughout the population is inevitable. With an
infinite population, the stochastic effects driving Muller’s
Ratchet are eliminated, so that it is possible to have a steady
state consisting of a finite fraction of organisms with viable
genomes. The selective advantage for sexual reproduction,
however, is not connected to stochastic effects, but rather
derives from the ability for viable haploids to recombine
with other viable haploids. In finite populations, this of
course has the effect of countering Muller’s Ratchet, but in
infinite populations the selective advantage for sex exists as
well.

VI. FUTURE RESEARCH DIRECTIONS

In this paper, we assumed that only haploid cells with
viable chromosomes are capable of engaging in sexual re-
combination. This allowed a simplified analysis within the
standard quasispecies formalism. While we obtained a selec-
tive advantage for sexual replication using this mating strat-
egy, a fuller analysis will require the consideration of various
mating strategies on the selective advantage for sex. An im-
portant such mating strategy, which is the opposite of the one
considered in this paper, is the random mating strategy,
whereby all haploids are capable of engaging in sexual re-
combination, and do so with a pairwise distribution given by
the Hardy-Weinberg equilibrium.

In this vein, one interesting question is to determine, for a
given fitness landscape, whether there always exists a mating
strategy for which sexual replication will outcompete asexual
replication. Additionally, while this paper implicitly assumed
that the strategy for sexual or asexual replication is inherited,
future studies should consider genomes where genes for sex
are explicitly included. This leads to the ability for sexual
organisms to mutate into asexual ones. As the selective ad-
vantage for sexual replication disappears (as a function of the
mutation rate, for instance), the models may exhibit localiza-
tion to delocalization transitions over the portions of the ge-
nome controlling sex.
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